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The characteristics of dynamic systems subjected to multiple linear constraints are determined 

by considering the constrained effects. Although there have been many researches to investigate 

the dynamic characteristics of constrained systems, most of them depend on numerical analysis 

like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to 

describe the motion for constrained discrete systems. Starting from the method, this study 

determines the dynamic characteristics of the systems to have positive semidefinite mass matrix 

and the continuous systems. And this study presents a closed form to calculate frequency 

response matrix for constrained systems subjected to harmonic forces. The proposed methods 

that do not depend on any numerical schemes take more generalized forms than other research 

results. 
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1. Introduct ion 

It is not easy work to determine the dynamic 

characteristics as well as the motion of constrain- 

ed structural or mechanical systems. There have 

been many researches (Park et al., 1997 ; Park et 

al., 2000; Zheng eta l .  1999) related to the con- 

strained motion of structural or mechanical sys- 

tems. In spite of a lot of efforts, there have been 

rarely closed methods to determine the constrain- 

ed motion. Udwadia and Kalaba (1992) propos- 

ed an equation of motion for constrained systems. 
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This method has advantages to be able to deter- 

mine the constrained motion and constraint forces 

without depending on any numerical schemes. 

This method can apply to constrained discrete 

systems to have the positive definite mass matrix 

and its validity has been investigated through the 

applications of various control fields. 

The frequency response function is a function 

to relate the input and output. A harmonic for- 

cing function is utilized as the input. The fre- 

quency response function of unconstrained system 

is determined by substituting the generalized dis- 

placements, velocities, and accelerations of ex- 

ponential form into the equation of motion for 

unconstrained system. However, if the system is 

subjected to multiple linear constraints that are 

functions of generalized coordinates to restrict the 

dynamic motion, the dynamic characteristics of 

the system shall be changed. Using harmonical 

solutions into Lagrange's equations formalism in 



1892 Hee Chang Eun, Eun-  Tail< Lee, Heon Soo Chung and Sang-  Yeol Park 

connection with Lagrange's multipliers, Gurgoze 

(2000) provided an explicit equation to determine 

the frequency response matrix for constrained sys- 

tems excited by harmonic forces. The constraints 

considered in his study were only limited to 

homogeneous functions of relative displacements 

and did not include interdependent state vari- 

ables. As an extension of this work, he and his 

co-workers (Gurgoze, 1999 ; Gurgoze and Hizal, 

2000; Gurgoze and Erol, 2002), presented equa- 

tions to determine the eigenvalues and eigen- 

vectors of constrained systems. However, these 

methods and applications require complicated 

intermediate procedures like the calculation of 

mode shapes of unconstrained systems. 

Starting from the generalized inverse method 

provided by Udwadia and Kalaba, the aim of this 

study is to present simple and generalized forms 

for the dynamic characteristics of constrained sys- 

tems. The derived equation gives more generaliz- 

ed forms than other methods without utilizing any 

numerical schemes. Also, modifying the vibration 

equation of the generalized inverse method, this 

study determines the dynamic characteristics of 

the systems to have positive semidefinite mass 

matrix and the continuous systems. The validity 

of the proposed method is illustrated by simple 

applications. 

2. Generalized Inverse Method 

Consider an unconstrained system of n par- 

ticles whose configuration at time l is described 

in terms of an n-vector. The masses m~, i =  1, 2, 

• .., n of the n particles will be taken to be 

constants. The equation of motion for such a 

system at time t may then be written, using the 

Lagrange or the Newtonian approach, as 

M ~ + C ( I + K q = P  (1) 

where M, C, and K are positive definite mass, 

damping, and stiffness matrices, respectively. P is 

the forcing vector. 
Let the system be subjected to the following m 

linear constraint equations of the form 

¢~(q, t ) = 0 ,  i=1 ,  2, ..., m,  m < n  (2) 

Differentiating equation (2) with respect to time 

t, it can he written in matrix form 

A ~ = b  (3) 

where A is known m × n matrix to be constants 

and b is m × l  vector. 

The presence of the constraint set (2) brings 

into play forces of constraints, F c so that the 

equation of motion at time t of the constrained 

system can be expressed as 

Mi~=F(q ,  (i, t )+FC(q ,  q, l) (4) 

where q, q, and i:i refer to the n displacement, 

velocity, and acceleration vectors, respectively, 

at time ! of the constrained system that has 

been described above. Based on Gauss's principle 

(1829) and fundamental linear algebra, Udwadia 

and Kalaba derived the equations of motion for 

constrained systems written by 

~ = a + M  -1/2 (AM -112) + (b - A a )  (5) 

where a = - M - I ( C ~ I + K q - P )  and ' + '  denotes 

Moore Penrose inverse matrix. 

The uniqueness and effectiveness of the gen- 

eralized inverse method expressed by equation 

(5) have been verified by various kinds of ap- 

plications. The generalized inverse method was 

derived under the fundamental assumption of 

positive definite mass matrix. Accordingly, the 

motion of constrained systems with positive semi- 

definite mass matrix cannot be described by equa- 

tion (5) and the equation should be modified. 

Let us consider a dynamic system that the mass 

matrix is positive semidefinite matrix of rank r, 

r <  n, written as 

0s×r 0s×sj ' r + s = n  (6) 

where 0 denotes zero matrix. Because the inverse 

of the mass matrix cannot be calculated, the 

constrained motion from equation (5) cannot be 

calculated. In order to utilize equation (5) to the 

system to have the mass matrix of rank r,  the 

mass matrix needs to be modified as 

where I is s ×s  unit matrix. 
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Utilizing equation (7) into equation (1), the 
equation of motion is expressed as 

M d t i + C t i + K q  = F + M o ~  (8) 

Assuming that this system is subjected to the 
constraints (2) and utilizing equation (8) as the 
modified equation of unconstrained motion, it 
is written as 

=M~ l j2 (AM~ 1/2) +b 

-[I-M~'Z(AM~ ljz) +AJM~ ~ (CCl+Kq-F-M0ci) (9) 

Arranging equation (9), the equation of motion 
for constrained systems to have positive semi- 
definite mass matrix is expressed as 

EI-- M*Mo] ~ = M~/2 (AM~/2) +b 
- M *  ( C ¢ I + K q - F )  (10) 

where M*=L I-M~l/e(AM~l/2) +AJ M~ 1. Equa- 

tion (10) can be extensively applied to the process 
to synthesize partitioned substructures including 
rigid-body structures. 

3. Frequency Response Matrix 
for Constrained Systems 

The equation of motion for a mechanical sys- 
tem subjected to harmonic excitation can be ex- 
pressed by 

M ~ + C ~ I + K q = F e  ~°t (11) 

where M, C, and K are n × n mass, damping, 
and stiffness matrices, respectively, co denotes the 
forcing frequency, and F is n Xl force vector. 
Substituting q ( t ) = q e  a°* into equation (11), it 
yields the relation 

q = H ( c o ) F  (12) 

between the constant part of the input and re- 
sponse vectors. The complex matrix 

H(co) = ( - c o Z M + i c o C + K )  -~ (13) 

is referred to the frequency response matrix or the 
receptance matrix. 

Let us assume that the system is subjected to 
m constraints like equation (2) and the second 
derivatives with respect to time are expressed in 
matrix form 

A ~l = b e ~ ° t  = R F  e i°~t (14) 

where R is m × n  matrix to relate the forcing 
vector F e  ~°t and the constraint equation (14). 
Substituting equations (11) and (14) into equa- 
tion (5) and arranging the result, it is derived as 

~=fl(co)~ (15) 

where 

fl  (co) = G - t D  

G= ~ - H (co) - '+  M 1'2 (AM -l/z) ÷AM -1 (H (co) -~+ coZM) / 

D = L i 1/2 (AM -~/2) ÷ (coZR + A M  -~ ) - I J  

The receptance matrix is an index to establish 
the relation of input and output of a dynamic sys- 
tem subjected to harmonic excitation. Although 
Gurgoze determined the frequency response ma- 
trix of constrained systems subjected to harmonic 
excitation, he considered the constraints of the 
form Ai~i=0 instead of equation (3). Thus, it 
seems that equation (15) gives a general form to 
express the frequency response matrix for con- 
strained systems. 

4. Eigenfrequency of Constrained 
Systems 

For a dynamic system in a region ,Qp of Fig. 
1 (a) described by the generalized displacement 
vector q =  [ql q2 "'" qn] r, the free vibration equa- 
tion is written in terms of matrix form 

M i ~ + C ~ / + K q = 0  (16) 

Assume that ( [ +  h) secondary systems composed 
of 1 systems of fixed-free end and h systems of 
free-free end are attached on the primary system 
as shown in Fig. l(b). Separating the primary 
system and the secondary systems at their boun- 
daries, 'the separated secondary systems exhibit 
two types of support conditions of free-free end 
and fixed-free end as shown in Fig. l(c). The [ 
secondary systems of fixed-free end have l DOF 
described by the displacement vector Z~d=IZ~d 
Z~, "" Z~,]r. The motion of h secondary sys- 
tems of free-free end to possess rigid-body DOF 
is described by the displacement vector Zer = [-z~,r 
z~,, "" z~h-l~,, Zhb,~] r of 2h DOF, where the 
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Fig. 1 

(a) 

(b) 
¢¢~ ~ :vS ,  ' 

22 
(c) 

Composition and decomposition of an entire 
structure and substructure; (a) an entire 
structure, (b) composition of an entire struc- 
ture and substrucutres, (c) decomposition of 
primary structure and secondary structures 

superscripts i and b indicate the inner and boun- 

dary sets, respectively. Accordingly, considering 

that the secondary systems of free-free end have 

zero-mass at the boundaries, the vibration equa- 

tion of the secondary systems having 2 h +  l DOF 

can be written in terms of matrix form 

Msb~+ CsbZ+ KsbZ=O, n > _ 2 h + l  (17) 

where 

M~b = 0 M~r , Csb= C~r 
0 0 Mbr Cftr ~ Cfb~J 

(18) 

o o I 
I~b= / 0 K~r K~ , M~b = [ z~r/ 

L 0 Kf~ K~rJ L Z~rJ 

The subscripts fr and fd represent the substruc- 

tures of free-free end and fixed-free end, respec- 

tively. The secondary systems of free-free end 
have zero-mass at the boundary DOF, hence in 

equation (18) M~=O. Also, the damping and 

stiffness matrices in equation (18) can be written 

by 

C l  _ _ ~ b  _ _  g ~ l b _ _  b l  
f r  - -  I k . J f r - -  - -  ~k.~fr - -  - -  C f r  

(19) 
= d i a g ~  c ~  c2~ "" ch,.J 

K ~ = K ~ = - K ~ = - K ~  
= d i a g L  kl, r kzjr "'" kh, rJ (20) 

In order to reduce the DOF of the primary system 

from n to g, n > g _ > l ,  the transformation 

q =  ~rYr (21) 

is utilized, where ~ r =  [ ~ ~ "'" ~0gJ is the modal 

matrix of the undamped system and yr is the g X 
1 modal displacement vector. Utilizing equation 

(21) into equation (16) with the assumption of 

classical damping matrix C, it is written by 

~¢r + ~/rr~'r + ArYr = 0  (22) 

where 

~rTM @r = It, ~rTC ~ r  = ~ffr 

~ K ~ r = A r = d i a g ( w ~ ) ,  j = l ,  2, ".-, g 

Yr = [Yl 3;2 "'" yg] r 

Based on equations (22) and (17), the vibration 

equation of the entire structure related to the 
displacement vector Up= [yr r Z2d r Zb r z2rrl r can 

be expressed by 

Metip + (Yup + KCup = 0 (2 3) 

where 

i l l  , 0 ]  Mc=L 0 0 0 

Considering common nodes between the systems 

at ( [ + h )  boundary points, the compatibility 

conditions 

g 

--  - - z  b l (24a) ql--o~=l¢o~Yo-- ij,~, i = l ,  2, --., 

g 
_ _  b q~--r~=CrjYr=Zs~, j = l + l ,  / + 2 ,  "", l + h ( 2 4 b  ) 

s = l ,  2, " ' ,  h 

at the boundaries should be satisfied. The g gen- 

eralized displacements of the primary system 

and the ( l + 2 h )  displacements of the secondary 

systems are expressed by a displacement vector Up. 
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As shown in equation (5), the actual accelera- 

tion of constrained systems is expressed as the 
sum of the unconstrained acceleration and the 
additional acceleration due to the presence of 
constraints. The unconstrained accelerations of 
the entire system are determined by equation 
(23)• The additional acceleration can be obtained 
in the following. The constraints of equation (24) 
can be expressed in matrix form 

A u p = 0  (25) 

where A is ( l + h ) ×  (g+ l+2h)  matrix to be 
constants written by 

A= 

¢~ ¢~ ... eg~ -10 ... 0 00 ... 0 i  0 ... 0 
¢~ ¢~ ... ¢~ 0-1 ... 000 ... 0 0 0 ... 0 

: '. , ,  : ', : . ,  '. : ', ,• ' : : , ,  : 

¢1l ¢21 "' Cgt 0 0 . . . .  10 0 '" 0 0 0 "' 0 
$1,÷Jl~+~l "' eg,+~/0 0 "' 0 00 " 0-I  0 "' 0 

¢1(1+2) ~2(l+2)'*' ¢g(1+2} 0 0 '*' 0 0 0 *" 0 0 - 1 - '  0 

il(I+h)~{I+h) '" ¢gli+h) 0 0 "" 0 0 0 "" 0 0 0 .... [ 

(26) 

Differentiating equation (25) twice with respect 
to time t, it follows that 

At ip=0  (27) 

The additional acceleration due to constraints 
is obtained by utilizing equations (23) and (27) 
into the second term of equation (5). Conse- 
quently, substitution of equations (23) and (27) 
into equation (10) leads to the equations of 
motion for the entire system 

( I - M ' M 0 )  i ip+M*Cup+M*Kup=0  (28) 

where M*=I_ I--Mdl/2(AMd 1/2) +AJ M~: ,000,0o0il 
LO 0 0 IJ LO00 

(29) lir000, ,y, c= 0c~d0 °0 K, d0 0 /  /z~d/ 
0 0 C~C~b K = o / 
o o c~# c~rj o K,~ ~rJ L~J 

Premultiplying (I-M*Mo)-: on both sides of 
equation (28) and using Up=lipe at, it follows 
that 

[ A z + AC* + K* J tip e a' = 0 (3o) 

where C * = ( I - M * M o ) - I M * C  and K * = ( I -  
M*Mo)-:M*K. The eigenvalues can be readily 
solved by using roots in MATLAB (1992). 

Also, the eigenvalues are obtained by using a 
state-space approach, which replaces (g + l + 2h) 
coupled second order differential equations by 
2 ( g +  l +2h)  coupled first order differential equa- 
tions. Introducing a state vector of length 2 ( g +  

l + 2 h )  

7 = Eo~ uf] ~ (31) 

into equation (28), it can be rewritten in a form 
that consists of 2 (g + l+ 2 h )  simultaneous first 
order ordinary differential equations as 

W0--  Rr]-----0 (32) 

where matrices W and R are both symmetric and 
are given by 

W = [  0 I - M ' M o ]  
I - M * M o  M*C J 

(33) 

a n d R = I I - M * M ° o  -M*KO ] 

Substitution of ~7----F eat into equation (32) yields 
the 2 ( g + l + 2 h )  ×2(g+l+2h)  generalized ei- 
genvalue problem 

R~=AW~ (34) 

where /l corresponds to the eigenvalue of the 
system• Equation (34) can be solved by using eig 
in MATLAB. The solutions of equations (30) 
and (34) represent the eigenvalues of the entire 
structure composed of the primary structure and 
the attached secondary systems. 

5 .  A p p l i c a t i o n  

( f r e q u e n c y  r e s p o n s e  m a t r i x )  

Consider a vibrational linear system consisting 
of three masses mi, ( /=1 ,  2, 3) connected by 
springs, and a viscous damper at the first mass, as 
shown in Fig. 2 (Gurgoze, 2000). Representing 
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7--?, V-% 

.I~_T~I -'- '77"L, 2 _ 'TTu 3 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /J /U/ /  
Fig. 2 A 3 DOF system with a single viscous 

damping 

the displacements of the masses mi by q~(t) ( i =  
1, 2, 3), the system matrices are expressed as 

[i00] [!001 
0 m3 00J -k3 k3 

To evaluate the numerical results for frequency 
response matrix of the given system, the following 
values were selected ; 

kl=k2 = 10 N/m,  ks=20N/m 

r n l = l  kg, m2=2 kg, m s = 4  kg, (36) 

c = 10 N/m/s ,  o9=2 rad/sec 

The receptance matrix of the unconstrained sys- 
tem by equation (13) and MATLAB was cal- 
culated as 

I 0.0247-0.0286i -0,0032+0.0037i-0.0159+0.0183i] 
H--[-0.0032+0.0037i-0.0124-0.0005i-0.0621-0.0024i1 (37) 

L-0.0159 +0.0183i -0.0621-0.0024i -0.0603-0.0118i3 

Assuming that the system is subjected to a con- 
straint 

ql + 2qs=q2 (38) 

the coefficient matrices A and b of equation (14) 
can be written as 

A--- [1 - 1 2], b =  [0 0 0"] (39) 

Consequently, the frequency response function of 
the constrained system was obtained by equation 
(15) and MATLAB, and the coefficient matrices 
and the frequency response matrix give that 

[-6.0-12.0i -4.0 8.0 t -0.6-0.2 0.2] 

c-- / ,v--[oli4-o,-o  
L 20.0+16.0/ -8  12.0/ . -0.4 -0.6 

(40) 
I 0.0246-0.0295i 0.0082-0.0098i -0.0082+0.0098i 

11=/0.0082-0.0098i 0.3361-0.0033i 0A639+0.0033i 
/ 

L-0.0082+0.0098i 0.1639+0.0033i 0.0861-0.0033i 

The final result 1~ coincides with that obtained 
from the equation provided by Gurgoze (1999). 

As another application, let us assume that the 
above-unconstrained system is subjected to a 
constraint 

q1+2q3=[1 1 3 ]Fe  ~°t (41) 

It can be shown that the above constraint is 
a nonhomogeneous function. This kind of con- 
straint cannot be handled in the method provided 
by Gurgoze. Differentiating equation (41) twice 
with respect to time t, it can be written in matrix 
form 

--o92[1 0 2] q2e ~°~1 =-ogz [1  1 3 ]Fe  ~ '  (42) 
qse~tJ 

Using the coefficient matrices of equations (35) 
and (42) into equation (15), the frequency re- 
sponse matrix is obtained as 

[-9.8462-13.8462i 10.0 18.4615+18.4615/] 
C--] 2.3077 -22.0 -3.0769 ] 

4.6154 3.6923 3.3846J 
(43) 

[0.0598-0.0751 i 0.0391-0.0491 i 0.0273-0.0343 i- 
I1=/0.3121-0.0114i 0.3544-0.0074i 0.3072-0.0052i 

/ 

L0.3134+0.0250i 0.3203+0.0164i 0.3242+0.0114i_ 

Through these applications, it is verified that the 
proposed method takes simpler and more general 
form than the Gurgoze's method. 

6. Longitudinally Vibrating Rod 

The partial differential equation of longitu- 
dinal vibration of a tapered rod fixed at x = 0  
and free at x = L  shown in Fig. 3(a) can be 
written by 

EA(x)  u"(x, t)=m(x)V~(x, t) (44) 

where u (x ,  t) represents the axial displacement 
of the beam at point x and time t. The primes and 
overdots denote partial derivatives with respect to 
x and t, respectively. Let us assume that the axial 
displacement u(x ,  t) is separable in space and 
time, or 
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J 

Fig. 3 

........... ) ~  

(b) 

A continuous system of tapered rod; (a) a 
entire system composed of" a tapered rod and 
discrete systems, (b) decomposition of a ta- 
pered rod and discrete systems 

t u(x, t) =3-],~i(x) qi( ) (45) 
i=1 

where ~bi(x) are the eigenfunctions of the linear 

structure, qi (t) are the corresponding generalized 

coordinates, and n is the number of modes used 

in the assumed-modes expansion. 

Utilizing equation (45) into the kinetic and 

potential energies of the system, they can be for- 

mulated as 

1 ?l n . 
T=yZS'2,mijqi(t)  q~(¢) (46a) 

f= 1 j =  1 

I n n  
V =~Y], ~ kijqi (t) q~ (t) (46b) 

i= IS= 1 

where 

m~= foLm (x) ¢b, (x) qS~ (x) dx (47a) 

r d~i(x) dqSj (x) dx (47b) 

Substituting equations (46) into Lagrange's equa- 
tions, it follows that 

(48) 
=~,m, j~s( t )  +~koq,(t)=0,  r = l ,  2, ..., n 

3"----1 j = l  

Expressing equation (48) in matrix form, the 

longitudinal vibration equation of the tapered rod 

is written as 

M ~ i + K q = O  (49) 

Assuming that ( l +  h) secondary systems com- 

posed of l fixed-free system and h free-free system 

are attached to the primary system, the vibration 

equations of the secondary systems are written in 

the same form as equation (17). The compati- 

bility conditions at junctions between the rod and 

the attached secondary systems are expressed as 

equations (24). 

The stiffness and mass distributions of the given 

rod are 

EAtxl EA[1 1 : x : l  
- 2 \ Z - / j  

(50) 
6 m(x)=vmll 1 { x ) 2 ]  

-~',T) J 

respectively. The eigenfunctions corresponding to 

a uniform rod clamped at x = 0  and free at x = L  
were assumed as 

/rx 
~bi(x) s i n ( 2 i - l ) ~ L - ,  i = 1 ,  2,-- . ,  n (51) 

Substituting equations (50) and (51) into equa- 

tions (47a) and (47b), and utilizing the result 

into equation (49), the equation of motion of the 

undamped discretized rod is obtained. Assume 

that four substructures are attached at locations 

indicated in Fig. 3 (a). Two substructures of them 

have fixed end and the others have free end. If the 

substructures are separated from the primary rod 

as shown in Fig. 3 (b), the equations of motion of 

the substructures are written in the form of equa- 

tion (17). Additionally assume that the longi- 

tudinal vibration of the rod is constrained by the 

linear relation of 

2u(x=L/4 ,  t ) - 5 u ( x = L / 2 ,  t) 
(52) -4u(x-=3L/4, t) +3u(x=L, t)=0 

It is observed that the constraint equation (52) 

establishes r igid-body motion in spite of the 
presence of subsystems. Using equation (45) into 

equation (52), the coefficient matrix A of equa- 

tion (27) by the constraint and compatibility 
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conditions should be written as 

1 
¢12 ¢22 ¢32 ¢42 --1 0 0 0 0 0 ] 
¢,4 ¢z4 ¢~  ¢ .  0 --1 0 0 0 0 

1 A =  ¢t6 ¢26 ¢~  ¢~  0 0 0 0 --1 0 
¢~6¢~¢~s¢ ,~  o o o o  o - 1  

o s l  s2 s3 s4 0 0 O0 0 

(53) 

where sl=2¢la--5¢zz--4¢a2+3¢4z, s 2 = 2 ¢ 1 4 -  

5¢z4-4¢s4+  3¢44, s3 =2¢1~ -- 5 ¢z6 -4¢ae  + 3 ¢46, 

s4=2¢ l s - -5¢zs -4¢as+3¢4s ,  and the subscripts i 
and j of ¢~ indicate the eigenvector correspon- 

ding to the j th  modal displacement of the ith 
mode. 

Utilizing the numerical values of ma=mb = 
m~=me=l ,  L:-200,  E = 2 ×  l0 s, A = 3 0 ,  n=8 ,  

r e = l ,  ka=3000, kb=9000, k~=7000 and ka= 
3000, the lowest frequencies were calculated by 

using equations (30) or (34), and MATLAB 

version 5.1 on a PC Pentium III. The results are 

shown in Table 1. The table represents the eigen- 

frequency of the entire structure with and without 

the additional constraint (52). The presence of 

the additional constraint yields the r igid-body 

motion of the entire structure, hence the lowest 
eigenfrequency must be zero. 

This application illustrates the effectiveness 

and easiness to calculate the eigenvalues of com- 

plicated continuous or discrete structures sub- 

jected to multiple linear constraints including 

compatibility conditions. Thus, the proposed 

method will be extensively utilized to the sub- 
structure synthesis and other eigenvalue pro- 

blems. 

Table 1 Eigenvalues of the entire structure with and 
without the additional constraint 

Mode number 
Eigenvalues (rad./sec.) 

Without additional 
constraint (52) 

With additional 
constraint (52) 

1 st 21.7 0 

2 nd 54.8 21.7 

3 rd 59.0 54.8 

4 th 83.7 74.2 

5 th 97.1 83.7 

6 th 135.0 97.1 

7. C o n c l u s i o n s  

Starting from the generalized inverse method 

provided by Udwadia and Kalaba, this study 
determined the frequency response matrix of con- 

strained system subjected to harmonic forces and 

multiple constraints. The derived frequency re- 

sponse matrix took a more generalized form than 

other results. Although the generalized inverse 

method cannot handle the constrained systems to 

have positive semidefinite mass matrix, this study 

extended it to the systems of positive semidefinite 

mass matrix and the continuous systems, and 

determined the dynamic characteristics. It was 

shown that the proposed approach is effective for 

establishing the dynamic characteristics of com- 
plicated systems composed of various subsystems 

as well as continuous systems subjected to con- 

straints. 
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